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I. FLUCTUATION CONDUCTIVITY ABOVE Tc

The resistance vs. temperature curves show precursor effects as the transition temperature is ap-
proached from above. The resistance is observed to drop at temperatures above Tc, to a degree that
depends on the dimensionality of the material (0D, 1D, 2D, 3D). We treat the conductivity above Tc as
a linear combination of mean-field conductivity (entirely due to normal state physics) and fluctuation
conductivity (due to superconducting fluctuations):
σ = σMF + σfluc.
The idea is that the material borrows kBT of energy from the thermal bath temporarily and creates
a superconducting fluctuation of limited size and limited lifetime somewhere in the material. While
this fluctuation exists it creates a small zero-resistance pathway for current, leading to a drop in global
resistance of the sample. These fluctuations occur rapidly and in many locations around the sample,
leading to clearly measurable effects when measured on the time scales of seconds.

We will work with the Fourier transform of ⟨|ψ|2⟩. Consider the GL free energy expansion above Tc
(α > 0), where the fluctuating order parameter is expected to be small. In this case we can ignore the
|ψ|4 term, and we will take the vector potential and external fields to be zero. This leaves a free energy
expansion of,

f = α|ψ|2 + ~2

2m∗ (▽ψ)2.
Now take the Fourier transform of ψ,

ψ(r⃗) =
∑
k ψke

ik⃗·r⃗. This gives for the free energy difference of the sample,

F =
∫
fdV =

∑
k

{
α+ ~2k2

2m∗

}
|ψk|2.

Now assume equipartition of energy to each degree-of-freedom of the fluctuating order parameter.
This means that every term in the sum on k will have on average kBT of energy, or in other words,

⟨|ψk|2⟩ = kBT/α
1+k2ξ2GL

1
V , where we have used the fact that ξ2GL = ~2

2m∗α .

The k-dependence suppresses the short wavelength fluctuations. In fact we should introduce a cutoff in
the k-sum because wavenumbers larger than 1/ξGL cannot be expected to contribute.

How big are the areas that fluctuate in to the superconducting state above Tc? Below Tc the order
parameter is assumed to be long-range phase coherent. Above Tc one can calculate the two-point correla-

tion function g(r⃗, r⃗′) ≡ ⟨ψ∗(r⃗)ψ(r⃗′)⟩, which is found to be g(r⃗, r⃗′) = m∗kBT
2π~2

e−R/ξGL(T )

R , where R = |r⃗− r⃗′|
(see Tinkham p. 300). The typical size of the fluctuation is on the order of the GL coherence length

above Tc, with ξ
2
GL = ~2

2m∗α and α > 0.

II. BRIEF INTRODUCTION TO TIME-DEPENDENT GINZBURG-LANDAU THEORY
(TDGL)

Above Tc the equilibrium value of the order parameter is zero, ψ0 = 0. Any fluctuation results in a
non-zero order parameter, as we assume ψ = ψ0 + δψ. TDGL says that such a fluctuation will relax
back to zero exponentially in time: dψ

dt = − 1
τ0
ψ. The result for the k = 0 momentum relaxation time is

τ0 = π~
8kB(T−Tc)

= 3ps−K
(T−Tc)

. (This result is derived for gapless superconductors by M. Cyrot, Rep. Prog.

Phys. 36, 103 (1973).)
Now consider the GL equation corresponding to the free energy expansion given above,

αψ − ~2

2m∗ ▽2 ψ = 0, or after dividing through by α,

ξ2GL ▽2 ψ − ψ = 0. The TDGL generalization of this equation is,
dψ
dt = − 1

τ0
(1− ξ2GL▽2)ψ.

Generalize the Fourier transform of the order parameter to a time-dependent version,
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ψ(r⃗, t) =
∑
k ψke

ik⃗·r⃗e−t/τk . Putting this into the generalized TDGL equation yields,
τk = τ0

1+k2ξ2GL
. This shows that short wavelength fluctuations will decay more quickly.

III. FLUCTUATION CONDUCTIVITY IN TDGL

Tinkham derives the fluctuation conductivity above Tc using the Kubo formalism, which examines
the current-current correlation function vs. distance. Basically, high correlations mean high conductiv-
ity. Here we use a simple TDGL argument. In analogy with the Drude expression for the mean field

conductivity, σn = ne2τ
m , let’s try,

σfluc = (e∗)2

m∗

∑kcutoff

k ⟨|ψk|2⟩ τk2 , where the factor of 2 comes from the fact that ψ2
k decays twice as fast

as ψk.
Substituting in the results for ⟨|ψk|2⟩ and τk from above yields,

σfluc = (e∗)2

~2

ξ2GL

V kBTτ0
∑kcutoff

k
1

(1+ξ2GLk
2)2

. The outcome of the sum (turned in to an integral) depends

on the dimensionality d of the system.
The results are,

d = 3: σfluc3D = e2

~ξGL(0) (
T

T−Tc
)1/2 ×

{
1/4 This approximation
1/32 Kubo

where we write ξGL(T ) = ξGL(0)
√

T
T−Tc

.

d = 2: σfluc2D = e2

~t (
T

T−Tc
)×

{
1/8 This approximation
1/16 Kubo

where t is the film thickness. Note that the fluctuation conductance σfluc2D t is universal, meaning that it
is independent of all sample details when plotted vs. ϵ = (T − Tc)/Tc.

d = 1: σfluc1D = e2

~ ( T
T−Tc

)3/2 ξGL(0)
Ac

×
{

1/8 This approximation
π/16 Kubo

where Ac is the cross sectional area of the 1D wire.

Note that in all cases the scale of the fluctuation conductivity is set by the quantum of conductance
e2

~ = 243.3µS. Alternatively one can write ~
e2 = 4.11kΩ.

The dc fluctuation conductivity diverges at Tc more strongly in lower dimensionality as

σflucdD ∝ 1
(T−Tc)(4−d)/2 .

Note that there is no divergence of the fluctuation conductivity in d = 4, meaning that mean-field
behavior is recovered in four dimensions.
The class web site shows fluctuation conductivity data from 1 and 2-dimensional materials.

IV. THE KOSTERLITZ-THOULESS (KT) PHASE TRANSITION FOR 2D
SUPERCONDUCTORS

One does not have true long-range order (LRO) in 1 or 2 dimensions. The 3D BCS ground state is a
coherent state of Cooper pairs that maintains phase coherence over effectively infinite distance. In lower
dimensions, the phase coherence is less strong. This is quantified by the two-point correlation function

for the GL order parameter. In 3D one has ⟨ψ∗(r⃗)ψ(r⃗′)⟩ ∼ constant as |R⃗| = |r⃗ − r⃗′| → ∞. Above Tc
one finds,
⟨ψ∗(r⃗)ψ(r⃗′)⟩ ∼ e−R/ξN .
In 2D at low temperature one finds, ⟨ψ∗(r⃗)ψ(r⃗′)⟩ ∼ 1

Rη(T ) . This difference between the exponential decay
above Tc to a power-law decay at low temperatures implies a phase transition. This is the famous “KT”
transition that is seen in 2D Coulomb gases and in vortices in thin films of superfluid 4He. The original
reference is J. Phys. C 6, 181 (1973).

The theory examines the lowest energy excitations out of the ground state. Individual vortices have
an energy that scales logarithmically with the size of the sample. Bound Vortex/Anti-vortex (V/AV)
pairs have a much smaller energy, hence they dominate the low temperature properties. As temperature
increases, there is an entropic advantage to de-pairing the V/AV pairs and creating un-bound free
vortices. This precipitates the KT transition at TKT . Below TKT there is zero resistance in the limit of
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current going to zero. In other words the critical current is zero! Above TKT there is finite resistance
even in the limit as the current goes to zero.


